Improved separation of Alzheimer's disease and related disorders using dual-point amyloid-PET

F. Segovia¹, J. M. Górriz¹, J. Ramírez¹, D. Castillo-Barnes¹, F.J. Martinez-Murcia¹, D. Salas-Gonzalez¹, R. Sanchez-Vaño², P. Sopena-Novales² and M. Gomez-Rio³

¹Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain ²Department of Nuclear Medicine, "9 de Octubre" Hospital, Valencia, Spain ³Department of Nuclear Medicine, "Virgen de las Nieves" University Hospital, Spain

INTRODUCTION

- ¹⁸F-Florbetaben (FBB) is an amyloid radiotracer that is being increasingly used to assist the diagnosis of Alzheimer's disease (AD).
- Using a Positron Emission Tomography (PET) device, ¹⁸F-FBB allows visualizing potential β-amyloid plaques in the brain, which are characteristic hallmarks of AD.

□ Internationally accepted criteria for ¹⁸F-FBB recommend acquiring PET data

EXPERIMENTS AND RESULTS

- This study involves data from 80 subjects fulfilling clinical appropriate use criteria for amyloid-PET scan according to international criteria.
- □ All participants were evaluated by experienced neurologists using standardized clinical and neuropsychological examinations. The evaluation included the acquisition of early and standard ¹⁸F-FBB-PET data, i.e. two neuroimages per subject.
- □ The acquired data were labeled by experienced clinicians after 1 year of clinical
- during 20 min. and start the acquisition between 45 and 130 min. after injection.
- □ Recent studies have suggested that early acquisitions (immediately after the radiotracer injection) of ¹⁸F-FBB provides information about the downstream neuronal injury, similar to that contained in ¹⁸F-FBB-PET images [1,2].

In this work, we analyze the usefulness of using early and standard ¹⁸F-FBB-PET images together to develop more accurate Computer Aided Diagnosis (CAD) systems for AD.

 \Box As far as we know this is first time that both, an early and a standard ¹⁸F-FBB-PET image are used as a single observation along with a CAD system for AD.

METHODS

 \Box A binary statistical classifier can be seen as a function $f: \mathbb{R}^D \to \{\pm 1\}$ that is able to predict the class (defined by a binary label) of a new (unseen) D-dimensional pattern. This function is built using training data consisting on a set of N labeled (of known class) *D*-dimensional patterns:

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_1, y_1) \in (\mathbb{R}^D \times \pm 1)$

monitoring on the basis of changes in the follow-up and results of explorations, including the visual inspection of the complementary neuroimages.

	#	Sex		Age		
		Μ	F	μ	σ	range
AD patients	44	20	24	63.50	6.59	49-74
Non-AD patients	36	23	13	62.89	8.99	42-79

□ All neuroimages were preprocessed following standard procedure:

- **Spatial registration**. The template matching approach implemented in SPM (version 12) was used.
- Intensity normalization. It was performed by dividing each voxel intensity by the mean intensity of the 0.1% of the voxels with highest intensity.
- A SVM classifier was used to separate patients and controls.
- \Box The performance was estimated by means of a k-fold approach and compared with using only one data modality:

	Accuracy	Sensitivity	Specificity
Proposed approach (two kernels)	92.50 %	86.36 %	100.0 %

□ Support Vector Machine (SVM) is a statistical classifier that builds the classification function using an hyperplane computed to have the largest distance to the closest training data point of any class. Usually, it is computed as a maximization problem:

maximize
$$\sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$
subject to
$$\sum_{i=1}^{N} \alpha_{i} y_{i}, 0 \le \alpha_{i} \le C, i = 1, 2, ..., N$$

where C stands for a predefined trade-off parameter between model simplicity and classification error, α is the vector of dual variables corresponding to each separation constraint, and $k(\mathbf{x}_i, \mathbf{x}_i)$ is a function $\mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ known as kernel.

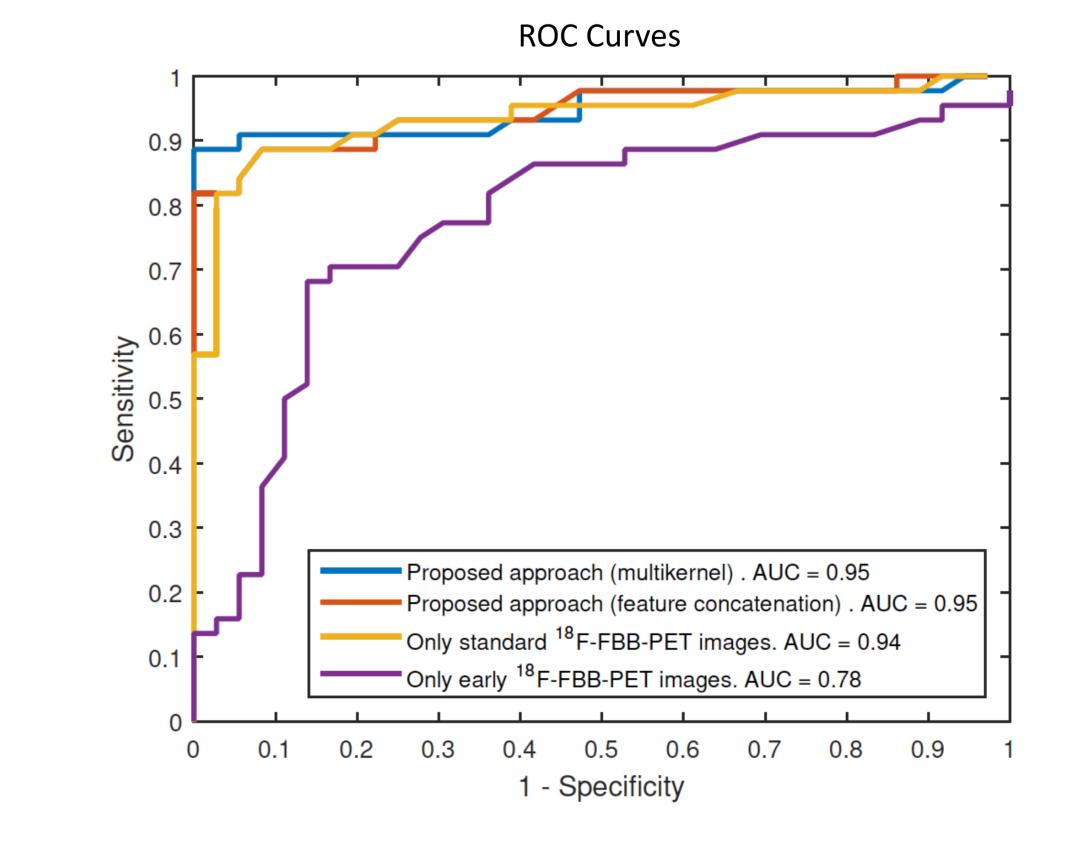
- Once the hyperplane is computed, the classifier assigns a group label to each new pattern according to the side of the hyperplane where the pattern is.
- □ In the classical approach to classify neuroimaging data, each neuroimage is considered as a pattern, \mathbf{x}_i , and each voxel as a feature of that pattern:

$$\mathbf{x}_i = \left(x_{i_1}, x_{i_2}, \dots, x_{i_D}\right)$$

- □ Feature selection and feature extraction techniques can be also applied to reduce the pattern dimensionality.
- □ We propose to use an early and a standard ¹⁸F-FBB-PET image as a single observation in the classification procedure. Two approaches are proposed:

Proposed approach (concatenation)	88.75 %	88.64 %	88.89 %
Only standard ¹⁸ F-FBB-PET data	87.50 %	88.64 %	86.11 %
Only early ¹⁸ F-FBB-PET data	73.75 %	75.00 %	72.22 %

Proposed approaches achieved higher accuracy rates than previous ones. The greater improvement was obtained with the MKL-based system.



Concatenate the voxels from both neuroimages resulting in patterns of $2 \times$ D dimensions:

 $\mathbf{x}_{i} = (x_{i_{1}}^{e}, x_{i_{2}}^{e}, \dots, x_{i_{D}}^{e}, x_{i_{1}}^{s}, x_{i_{2}}^{s}, \dots, x_{i_{D}}^{s})$

where $x_{i_i}^e$ and $x_{i_i}^s$ belong to an early and a standard ¹⁸F-FBB-PET image respectively.

Compute a kernel per each neurorimage and combine resulting kernels as [3]:

 $k(\mathbf{x}_i, \mathbf{x}_j) = \frac{w_e k_l(\mathbf{x}_i^e, \mathbf{x}_j^e) + w_s k_l(\mathbf{x}_i^s, \mathbf{x}_j^s)}{2}$

where \mathbf{x}_{i}^{e} and \mathbf{x}_{i}^{s} are, respectively, the voxels from early and standard ¹⁸F-FBB-PET neuroimages corresponding to patient \mathbf{x}_i ; w_e and w_s are the weights of each kernel; and $k_l(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \mathbf{x}_j^T$.

- 1. F. Segovia et al., «Usefulness of Dual-Point Amyloid PET Scans in Appropriate Use Criteria: A Multicenter Study», Journal of Alzheimer's Disease, vol. 65, n.º 3, pp. 765-779, jul. 2018.
- 2. S. Daerr et al., «Evaluation of early-phase [18F]-florbetaben PET acquisition in clinical routine cases», Neuroimage Clin, vol. 14, pp. 77-86, oct. 2016.
- 3. M. Gönen y E. Alpaydın, «Multiple Kernel Learning Algorithms», J. Mach. Learn. Res., vol. 12, pp. 2211–2268, jul. 2011.