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ABSTRACT Machine learning has been successfully applied to many areas of science and engineering.
Some examples include time series prediction, optical character recognition, signal and image classification
in biomedical applications for diagnosis and prognosis and so on. In the theory of semi-supervised learning,
we have a training set and an unlabeled data, that are employed to fit a prediction model or learner, with
the help of an iterative algorithm, such as the expectation-maximization algorithm. In this paper, a novel
non-parametric approach of the so-called case-based statistical learning is proposed in a low-dimensional
classification problem. This supervised feature selection scheme analyzes the discrete set of outcomes in
the classification problem by hypothesis-testing and makes assumptions on these outcome values to obtain
the most likely prediction model at the training stage. A novel prediction model is described in terms of the
output scores of a confidence-based support vector machine classifier under class-hypothesis testing. To have
a more accurate prediction by considering the unlabeled points, the distribution of unlabeled examples must
be relevant for the classification problem. The estimation of the error rates from a well-trained support vector
machines allows us to propose a non-parametric approach avoiding the use of Gaussian density function-
based models in the likelihood ratio test.

INDEX TERMS Statistical learning and decision theory, support vector machines (SVM), hypothesis testing,
partial least squares, conditional-error rate.

I. INTRODUCTION
Machine learning has been successfully applied to many
areas of science and engineering [1]. Some examples include
time series prediction [2], optical character recognition [3],
signal and image classification in biomedical applications
for diagnosis and prognosis [4], etc. The support vector
machine (SVM) is a recently developed paradigm in machine
learning [5] with applications to brain image processing
and classification [6]–[11]. In this scenario, the purpose of
these techniques is to provide objective clinical decisions
and an early detection of abnormal perfussion/metabolic
patterns [11].

The performance control of a SVM is a major requirement
in any classification problem [12], i.e. the development of

computer-aided diagnosis (CAD) systems [13], [14]. Several
sophisticated CAD systems have been recently proposed for
the diagnosis of AD [15]–[18]. As an example, in [18] a view-
aligned hypergraph learning method based on the sparsity
representation is proposed. Although, these systems achieve a
good performance in terms of accuracy and a reasonable com-
putational cost they employ all original features for model
construction, while there may exist noisy or redundant infor-
mation in original features [18]. It is interesting to select those
most informative features in terms of class-separability for
subsequent model construction but, in the neuroimaging field
with an uncertain labeling process (ground truth), the learning
ability of such methods could be significantly affected. Nev-
ertheless, this is the main goal of the proposed methodology,
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FIGURE 1. Diagram of the non-parametric CSL approach vs. baseline.

to use the class-information at the validation stage to propose
more accurate models.

Typically, the performance control is specified in terms
of minimum error rate or overall accuracy, although many
factors including noise, the inherent complexity of the clas-
sification task, computational constraints, etc., may inhibit
the system from achieving the performance requirements
for an specific application [19]. Fortunately, other solutions
based on the optimal classification theory proposed in [12],
i.e. the ones based on controlled error rates [20], have been
analyzed and demonstrated demonstrated their reliability
and efficiency as methodologies for the classifier design.
As an example, this methodology was firstly presented in
the neuroimaging field in [13], where the development of
the CAD systems using functional image modalities, such as
positron emission tomography (PET) or single-photon emis-
sion tomography (SPECT), established a confidence level in
diagnostics.

On the other hand, decision theory [21], that is,
the application of statistical hypothesis testing to the detec-
tion problem, is a well-known statistical technique that
allows model/feature selection in the cross-validation (CV)
loop [10], [22]. The so-called case-based learning (CSL)
employs a model selection algorithm in order to select the
optimal classifier that minimizes the CV error (see figure 1) in
a semi-supervised fashion. In a nutshell, this method consist
in performing hypothesis testing [21] on the set of unla-
beled validation responses or outcomes by the extraction of
extended datasets under null&alternative hypotheses. Other
approaches for model/feature selection are based on Infor-
mation Theory, filter methods, embedded and wrapper meth-
ods, etc. [23], [24]. Unlike the latter methods CSL evaluates
a likelihood ratio test on the class-dependent features and
selects the most probable model among them. In particular,
supervised feature extraction (SFE) allows to obtain different
datasets of features by hypothesizing on the unknown out-
comes or responses of the validation pattern. As an example,
in the binary classification problem, with classes ω0 and ω1,
two different datasets can be derived with two prediction

models for each validation pattern, corresponding to the null
H0 : ω0 & alternative H1 : ω1 hypotheses. The difference
between them can be assessed in terms of probability by using
either a model-based hypothesis testing framework, as pre-
liminary proposed in [10], or the classifier configuration
derived from the novel datasets, i.e. in the output-score space
of the support vectors, as shown in this paper. The influence
of the validation pattern on these prediction models, i.e. the
trained SVM,will depend on the relevance of the features that
represent the samples in feature space and on the inherent
complexity of the classification task beforehand. Here, it is
measured in terms of the output scores of a confidence-based
support vector machine classifier whilst in [10] this issue was
not managed. In addition, this paper effectively demonstrates
the benefit of the proposed approach by theoretically simulat-
ing the histogram of two classes under the class-hypotheses,
showing the reduced overlap between distributions when the
real hypothesis is considered.

This paper is organized as follows. In section II,
a background to the Bayes theory for solving classification
problems is provided. A connection of this theory to the CSL
methodology is derived in section III providing a novel like-
lihood ratio based on the error-rate margin under the class-
hypotheses. In the following subsection III-B two classical
feature extraction methods are proposed for construction the
extended datasets, such as Least Squares (LS) and Partial LS.
In addition an implementation using the SVM classifier is
shown in subsection III-C where the two-class classification
problem is assumed, although it can also be extended to a
multi-class case. Finally, section IV, presents experimental
results to demonstrate the efficiency of the proposed method
using synthetic and medical image databases. A full experi-
mental framework is provided to demonstrate the benefits of
the CSL acting on baseline approaches, i.e. using LS and PLS
FE methods and SVM classifiers for leave one out-CV error
minimization. In section V, conclusions are drawn.

II. BAYES FORMULATION OF THE CLASSIFICATION
PROBLEM
Consider a set of patterns Z = {X ∈ Rp,Y ∈ R}, represented
by a set of vectors X in a d-dimensional Euclidean space and
admissible classes Y ∈ {w0,w1}. The evidence of the feature
vector can be written as:

p(x) = p(x|w0)p(w0)+ p(x|w1)p(w1) (1)

where p(wi) is the prior probability of class wi and, accord-
ingly to Bayes’ formula, the posterior probability is defined
as:

p(wi|x) = p(x|wi)p(wi)/p(x) (2)

Given the ideal learner or mapping f̃ : Rd
7→ {w0,w1} that

assigns each feature vector to its real class, the classification
problem can be tackled byminimizing the sample conditional
error with respect to the set of mappings {f }:

min
f
p(wi|x) when f̃ (x) = wj, i 6= j (3)
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The classifier f naturally divides the feature space Rd into
two regions named R0 and R1, at least, assigning any new
pattern to the category lying on the same side of the decision
surface. The error rates Ei can be computed by integrating on
these subspaces the conditional probabilities:

Ei =
∫
Ri
p(wj|x)p(x)dx (4)

III. A NOVEL CASE-BASED LEARNING ON THE
CONDITIONAL ERROR
Under the CSL approach [10], a class is considered as an
hypothesis on a Neyman-Pearson hypothesis testing frame-
work, that is, Hi = wi for i = {0, 1}. Thus we try
to maximize the probability of detection PD = P(wi;wi)
of one of the hypotheses (classes) when it is true for
a given significance level or probability of false alarm
PFA(wi;wj), for i 6= j. In particular, w1 is decided if the
LRT holds:

L(x) =
p(x;w1)
p(x;w0)

> γ (5)

where γ is a constant threshold. Although this ratio is equiv-
alent, in terms of ability to classify, to having the class poste-
riors for optimal classification [25], class posteriors allows us
to introduce a non-parametric approach in this framework by
formulating an overall error-rate ratio test from the integrated
version of the conditional probability in equation 3 as:

L(x) =
E0(w1)+ E1(w1)
E0(w0)+ E1(w0)

> γ (6)

where Ej(wk ) =
∫
Rj
p(wi|x;wk )p(x)dx is the error rate under

wk hypothesis in region Rj for i 6= j and k = {0, 1}. The pre-
cision in that regions can be defined as Pj = Ej/

∫
Rj
p(x)dx.

The hypothesis w0 is decided if the LRT in equation 6 holds,
that is, the one with minimum error rate in regions R0 and R1.

A. SAMPLE REALIZATION UNDER CLASS-HYPOTHESES
In the CSL approach the sample realizations x = (x1, . . . , xd )
of the input pattern under the class-hypotheses wk , denoted
by (x;wk ), are obtained by using a SFE scheme [10].
In this case, equation 6 allows us to select the class whose
conditional-error rate is minimum when one of the two class-
hypotheses is true. Classical methods for signal detection and
classification, such as LDA or QDA, are based on a LRT sim-
ilar to the one shown in equation 5, but evaluating hypothesis
testing on the raw data, i.e. the input pattern X is assumed
to be observed under the null & alternative hypotheses in
order to check which state is more likely. The result of the
test is affected by several factors such as the presence of
noise or redundant features in high dimensional spaces [26].
This is partly compensated by the use of SFE which allows us
to obtain p-dimensional features of the d-dimensional input
patterns with p� d under H0 and H1.
Given a validation pattern x, the admissible classes
{w0,w1} and the training set X = [xT1 , . . . , x

T
N ]

T , two

extended training sets are built for SFE as:

Xe = [xT , xT1 , . . . , x
T
N ]

T

Yk = [wk ,YT ]T (7)

where Y = [y1, . . . , yN ]T , is the training label vector.

B. P-LS FOR THE CLASS-HYPOTHESIS-BASED FE
The LS method provides a vector of parameters w by min-
imizing a squared error cost function [27]. The LS solution
under the CSL approach can be expressed as:

wk = (XT
e Xe)−1XT

e Yk (8)

and the preprocessed extended datasets as Zk = (Xk ,Yk )
for k = {0, 1}, where Xk = wT

k Xe is naturally a (p =
1)× (N + 1)-dimensional feature vector. On the other hand,
PLS [28] is a statistical method which models relationships
among sets of observed variables bymeans of latent variables.
In its general form, PLS is a linear algorithm for modeling
the relation betweenX andYk by decomposing them into the
form:

Xe = XkLTk + Rk (9)

Yk = YkMT
k + Sk (10)

where Xk , Yk are (N + 1) × p matrices of the p extracted
score vectors (components or latent vectors),Lk ,Mk are d×p
matrices of loadings and Rk ,Sk are (N + 1)× p matrices of
residuals (or error matrices). The xk -scores in Xk are linear
combinations of the input variables and can be considered as
good ‘‘summaries’’ of them. Finally, the novel datasets are
extracted as Zk = (Xk ,Yk ).

C. A NOVEL IMPLEMENTATION USING SVM
To demonstrate the effectiveness of the proposed method-
ology, it is implemented using SVM as the baseline clas-
sifier because of its strong theoretical foundation and high
generalization ability [5]. The non-parametric method used
here, in order to implement equation 6, is based on the
empirical cumulative density (ECD) function for a trained
SVM as defined in [20]. Many works have been reported on
transforming output scores to probabilities [29] therefore the
probabilities detailed throughout the paper can be estimated
by them. The score output by the SVM for each feature indi-
cates the likelihood that the input pattern belongs to a class
thus it ranks input samples from the most likely members to
the most unlikely members of a class [20].

Given a extended training dataset Xe with N samples,
consisting of Ni samples of class wi, the ECD function for
class wj under hypothesis wk is defined in the output-score
space of the SVM as:

Fj(t;wk ) =
card(f (x) < t, x ⊂ Rj;wk )

Nj
(11)

Following equation 4 the error rate function Ei in the region
Ri = {x ⊂ Xe; t1 < f (x) 7→ wi < t2} can be approximated
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as:

Ei(t1, t2;wk )

=

∫
Ri
p(wj|x;wk )p(x)dx

= p(wj)
∫
Ri
p(x|wj;wk )

'
card(f (x)< t2, x⊂Rj;wk )− card(f (x)< t1, x⊂Rj;wk )

N
(12)

where
∫
Ri
p(x|wj;wk ) ' p(wj)(Fj(t2;wk ) − Fj(t1;wk )) and

p(wj) = Nj/N . The selection of the limits t1, t2 under the con-
fidence based-classifier design theory [20] allows to define a
negative/positive bound below/above which the error rate is
smaller than a targeted error and therefore, a decision on the
input pattern can be achieved (x ⊂ R0/R1). On the contrary,
the samples are rejected (x ⊂ Rr ) because the decision is too
risky.

In order to be conservative we need to include all the avail-
able samples of the dataset in the computation of error rates,
thus these magnitudes are computed by locating the limits t1
and t2 on the boundaries of the regions. Thus, we select the
decision surface of the SVM (f (x) = 0) and the minimum
fmin (maximum fmax) output-score value for class w1 (w0)
in the previously defined region R0 (R1). In other words,
Rr is assumed to be negligible or the targeted error to be
huge. Finally, taking into account the definition of the error-
rate and its correspondent ratio test, the decision rule can be
formulated in terms of precision in regions R0 and R1 as:

L(x) =
P0(w1)+ P1(w1)
P0(w0)+ P1(w0)

(13)

where the precision functions are defined as

P0(wk )

=
card(f (x)<0, x⊂R0;wk )−card(f (x)< fmin, x⊂R0;wk )

card(fmin< f (x)<0;wk )

and

P1(wk )

=
card(f (x)< fmax , x⊂R1;wk )−card(f (x)<0, x⊂R1;wk )

card(0< f (x)< fmax;wk )

As a conclusion, we take advantage of the misclassified sup-
port vectors and rank them according to their output scores
from the minimum/maximum value to zero. All the samples
with scores included in these regions allows us to compute an
approximation for the error rates as shown in equation 13.

IV. EXPERIMENTS
A set of experiments are carried out on synthetic and image
databases where the small sample size problem is typically an
issue, i.e. brain image databases [30], [31]. To this purpose,
a fair comparison using the same FE and statistical validation
schemes for the proposed non-parametric approach and the
baseline methods is performed. In both cases the error esti-
mation is obtained by LOO-CV and a linear SVM classifier

FIGURE 2. LS decision surfaces of two Gaussian classes. The blue-shaded
area represents the ‘‘xor’’ logical operation between the two surfaces.

FIGURE 3. SVM decision surfaces of extended datasets and support
vector configuration for a validation pattern with class w0. Down: zoom
on upper figures.

to avoid over-fitting. The number of extracted components for
the FE methods should be small since the proper estimation
of any precision or error rate in the output score space of
this methodology must fulfill some conditions as detailed in
the Appendix, i.e. only a few components features will be
analyzed, showing average results and standard deviations.

A. SYNTHESIZED EXAMPLE
Firstly, we evaluate the posterior probability-based decision
on a 2D experiment with known distributions. Two hundred
samples are randomly drawn from two Gaussian distributions
with means µ0 = (0, 0) and µ1 = (1, 1) and covari-
ance matrices S0 = [1.4; .41] and S1 = [1 − .1;−.11].
The samples together with the LS-decision surfaces under
class-hypotheses w0 and w1 for a specific validation pat-
tern (red circle) are shown in figure 2. At the FE stage
of the proposed method LS is applied to the input data to
obtain the extended datasets described in section III-B. Under
the class-hypotheses the extended datasets and the different
SV configurations are obtained as shown in figure 3, where
the same validation pattern is considered. A zoom on these
figures reveals an increase in the number of support vectors
in the wrong subspace, that is, the conditional probability
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FIGURE 4. Overall performance on the dataset. CSL vs baseline and
relevancy. Up: 200 sample; Bottom: 500 samples.

p(wi|x) for the computation of the error rate on this subspace
Rj, for i 6= j, is increased.

As shown in these figures, the sample (close to the margin)
used to describe the operation of the proposed method is
relevant [10] in the sense that a substantial change between
the extended datasets and their SV configuration is obtained.
The SVM-based classification stage on the selected dataset
would benefit from the right assumption (the real pattern
class) following a good performance of the SVM classifier.
On the contrary, the selection of the validation pattern class
would not considerably affect the target performance of the
current classification system. See for example in figure 4
where all the samples, the non-relevant ones and the improve-
ments of the non-parametric CSL approach on the base-
line (without class assumptions) are shown. The samples,
drawn in yellow font, are correctly classified independently
of the assumption made on the processed pattern. It is worth
mentioning that for a correct operation of the algorithm the
conditional-error regions must be filled with samples (see
Appendix), in other case the posterior probability estimation
would be biased and the likelihood ratio would fail. This issue
may be controlled by the trade-off between the number of
samples N and the feature dimension d .
By increasing the number of input patterns up to 500 sam-

ples, a smoothed histogram of the SVM output scores,

FIGURE 5. Histograms of the SVM output scores under hypotheses.
Up: Positive validation pattern; Down: Negative validation pattern.

for each class, can be plotted in order to compare the
regions Ri under class-hypotheses when one of them is true.
The overlap of the output scores between training classes
decreases on average when the correct assumption is con-
sidered (Kullback–Leibler distances d rc among distributions
assuming class cwhen the real class is r : d+− = 0.1030, d++ =
0.0278; d−+ = 0.0813, d−− = 0.0278). This is actually what
is shown in figure 5, where the minimum margin (R0 and R1)
with less conditional-error rate can be selected. Note that this
class selection is not intended for classification purposes but
to improve the feature vector extraction prior to classification.
The confusion matrix on the CV loop using a linear-SVM for
500 samples is depicted in table 1. Notice again the limitation
of the proposed approach when estimating the pdf of the error
rate with small sample sizes. A significant sample realiza-
tion on the SV margin is required to estimate the fraction
of samples that are correctly/incorrectly classified using the
SVM. This drawback is briefly explained in [20] and detailed
in the Appendix. In this sense this limitation could be a
challenge when dealing with biomedical datasets (d >> N ).
Hopefully, for example, brain image datasets, such as the
ADNI dataset [11], are continuously increasing the sample
size and this limitation may be overcome. Additionally, there
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TABLE 1. Confusion matrix on training set (500 samples) using linear
SVM for Gaussian data.

TABLE 2. Demographic details of the SPECT dataset. AD 1 = possible AD,
AD 2 = probable AD, AD 3 = certain AD. µ and σ stands for population
mean and standard deviation respectively.

are several works [9], [13] that show clear advantages of using
a reduced number of discriminative features in this scenario,
thus reducing the dimension of the features can relive this
problem when the sample size is unavoidable small. This
issue is experimentally shown in figure 4 at the bottom, where
an increase in sample size reveals further improvements on
the baseline.

B. SPECT-IMAGE DATABASE
Baseline SPECT data from 96 participants were col-
lected from the ‘‘Virgen de las Nieves’’ hospital in
Granada (Spain) [30]. The patients were injected with a
gamma emitting 99mTc-ECD radiopharmeceutical and the
SPECT raw data was acquired by a three head gamma camera
Picker Prism 3000. A total of 180 projections were taken
with a 2 deg angular resolution. The images of the brain vol-
umes were reconstructed from the projection data using the
filtered backprojection (FBP) algorithm in combination with
a Butterworth filter for noise removal. The SPECT images
were spatially normalized, using the SPM software [32],
in order to ensure that the voxels in different images refer to
the same anatomical positions in the brain. After the spatial
normalization a 95 × 69 × 79 voxel representation of each
subject was obtained, where each voxel represents a brain
volume of 2.18 × 2.18 × 3.56mm3. Finally, the intensities
of the SPECT images were normalized with a maximum
intensity value Imax, which is computed for each image by
averaging over the 3% highest voxel intensities. The SPECT
images were visually classified by experts of the ‘‘Virgen
de las Nieves’’ hospital using four different labels: normal
(NOR) for patients without any symptoms of Alzheimer
Disease (AD), and possible AD (AD1), probable AD (AD2)
and certain AD (AD3) to distinguish between different levels
of the presence of typical characteristics for AD. Overall,
the database consists of 41 NOR, 29 AD1, 22 AD2 and
4 AD3 patients. Table 2 shows the demographic details of
the database and in figure 6 some examples of the dataset are
depicted.

FIGURE 6. Axial example slices (# 30) of four subjects of the SPECT
database. Left to right, top to bottom: NOR, AD1, AD2, AD3.

FIGURE 7. Pre-selection of 20 BAs in light colors using a t-test based
feature rank algorithm.

C. RESULTS AND DISCUSSION
Additionally to the aforementioned preprocessing steps,
the SPECT images are converted into feature vectors, prior
to classification, by means of two masking procedures.
Firstly, all the brain-volume voxels are consider as features in
the classification task. Secondly, several standardized brain
regions in MNI space [33], are extracted from subjects and
then classified, separately. In the latter case, 20 out of the
116 Brodmann areas (BA) were previously selected using
an absolute value two-sample t-test with pooled variance
estimate on the whole database (see figure 7). The aim of
this selection is to assess the performance of the methods
on relevant regions in terms of separability. In both cases,
the sample size N ∼ 100 is less than the input dimension
103 < d < 105, thus the use of any FE method as a part
of the non-parametric CSL approach is necessary to avoid
the curse of dimensionality. Moreover, as commented in the
previous examples and detailed in the Appendix, the limita-
tion of the current method in the estimation of conditional-
errors may be also relieved by increasing the sample size N ,
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TABLE 3. Statistical measures of performance for the proposed
PLS-based method and the baseline approach on the SPECT database.

that is, by filling up regions R0,1 with sample realizations
(see figure 3). However, in this real case, we cannot afford this
problem by increasingN but to reduce the number of features
d using the PLS method. To this purpose, only the first PLS-
component is considered (highest variance) transforming a
complex task into a one-dimensional classification problem,
as shown in the previous examples with Gaussian pdfs and
the classical LS.

The statistical measures to assess the performance of the
CSL approach on the SPECT dataset are summarized in
table 3, where a linear SVM classifier in a CV loop is used
for classification. This table shows how even using a small-
sample size the improvement on the baseline, under the same
experimental framework, is substantial. The PLS-based CSL
method outperforms in 18 out of 20 BA the baseline although
this improvement consist only in 4 positive samples and
14 negative samples. This performance yields an accuracy
rate higher than the baseline in one point, as shown in table 3
and figure 10. As an analysis example, note the configura-
tion of the SVs and the number of misclassified vector in
the negative-output subspace (positive SVs) using a control
subject from the SPECT database. The one-dimensional fea-
ture is relevant in the aforementioned sense thus the wrong
assumption increases the number of misclassified vectors
in the negative subspace R0 and thus increasing the error
precision in that region (see figure 11).

A more detailed analysis of the proposed system outcome
reveals that the CSL provides an additional improvement
only in the overlap area between the analyzed classes (NOR
vs. AD) as expected. In this database this area mainly con-
tains AD1 labeled patients, which corresponds to the typical
MCI clinical pattern, and controls. This is shown in fig-
ure 8 where the whole brain volume is considered for the
binary classification. As shown from this figure the number
of hits and misses of the both approaches vs. the former
four categories or classes reveals an improvement on two
subjects in NOR andAD1 classes. By analyzing the first three
principal components with maximum variance the subjects
can be drawn in a 3D-projection space in figure 9 where the

FIGURE 8. Detail of the improvement of the proposed method (blue) vs
the baseline (red) by considering the whole brain volume approach.
M: miss, H: hit.

FIGURE 9. PCA on the SPECT dataset. Note how the improvement
subjects are located close to the decision surface.

improvement subjects are located on the boundary (diamond
marker).

Although it is reasonable to optimize parameters in the
development of CAD systems by minimizing CV error rates,
the resulting classification rates are usually biased estimates
of the actual risk due to the small sample size problem. This
is a common setting in healthcare database studies, where
CV-based error estimation is usually selected as validation
method [8]. In [10] a full simulation is provided to com-
pare bias and variance in the error estimation of the CSL
approach with the ones obtained by baseline approaches. As a
conclusion, the difference between empirical and true errors
was lower than 5%, and both were statistically similar over
this simulation, where the mean estimator was considered
following the same strategy as in the experimental part [10].
Although the bias of the CV error estimate is not significant
for none of the aforementioned methods on this classification
task, we could obtain a close to unbiased estimate of the
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FIGURE 10. Performance of the proposed method (blue) vs the
baseline (magenta) using PLS over the most relevant BAs.

FIGURE 11. Configuration of the output score SVM in the PLS-based CSL
approach on both hypothesis for a relevant feature. Real class: negative.

actual risk by using the results of several resampling and
optimization methods [34], [35].

V. CONCLUSIONS
In this paper, the application of the CSL method to a
neuroimaging dataset and some connections with previous
approaches are presented. The non-parametric CSL approach
is evaluated on synthetic/SPECT image datasets [30]. The
CSL approach combines FE, hypothesis testing on a discrete
set of expected outcomes and a cross-validated classification
stage. This methodology provides extended datasets (one
per class-hypothesis) by means of FE methods, which are
scored probabilistically using the output scores of a prop-
erly trained SVM inside a CV loop. Our results demon-
strate that, although the method can only be applied to the
low-dimensional problem, due to the poor estimate of the
conditional-error probability for a low ratio N/d , the result-
ing system provides a CV error estimate that outperforms
the one obtained by baseline methods that do not consider
such FE optimization. In future works we will consider the
extension of different resampling methods, such as K-fold
CV, where the influence of a set of patterns on the classifier
configuration is expected to be more evident.

APPENDIX
In this section we demonstrate what are the limitations
of the current proposed method and the benefits of using
homogeneous linear classifiers such as SVMs [36] in high
dimensional problems. To this purpose we make use of
the theory presented in [37] which applies the classical

combinatorial geometry to develop the separating capacities
of decision surfaces.
Definition: Given X an arbitrary set of feature vectors in

the Euclidean space Rd , a dichotomy {X−,X+} of X is said
to be homogeneously linearly separable (HLS) if there exists
a linear threshold function fw : Rd

−→ {−1, 0, 1} such that:

fw(X−) = wTX− < 0

fw(X+) = wTX+ > 0 (14)

In other words, the separating hyperplane passes through the
origin and is the (d − 1)-dimensional orthogonal subspace
to w.
The main question here is to find the relation between the

elements of the dichotomy and their labels, that is, given a
training set in general position X = {x1, . . . , xN } and the
family of decision surfacesw correctly separating the training
set, will the validation pattern x be categorized by them into
just one of the two categories?. If this holds the pattern x
is said to be non-ambiguous relative to the family fw. The
following theorem establishes the number of groupings that
can be formed to separate training data into two classes.
Function Counting Theorem:GivenN arbitrary samples in

general position in Rd the number of HLS dichotomies is:

C(N , d) = 2
d−1∑
k=0

(
N − 1
k

)
(15)

where
()

stands for the binomial coefficients. The demon-
stration of this interesting theorem can be followed in [37].
From this expression we can compute the probability that any
of these dichotomies, assuming they have equal probability,
is equal to the one assigned by the label set Y:

P(N , d) =
C(N , d)

2N
(16)

This probability clearly tends to one with increasing d thus
our proposed method, that estimates the ECD function by
the evaluation of R0 and R1 subspaces, will fail under this
condition since the latter regions would be empty of samples.
In other words, the classification problem is HLS, i.e no
misclassified support vectors can be found in Xk . Moreover,
based on this theorem we can easily derive the following:
Proposition: LetX∪{x} be the extended datasets in general

position in d-space, then the validation pattern x is ambiguous
with respect to theC(N , d−1) dichotomies of the training set
X relative to the class of all decision surfaces w. Moreover,
the probability Pa(N , d) that x is ambiguous with respect to
a dichotomy of X is:

Pa(N , d) =
C(N , d − 1)
C(N , d)

(17)

Proof: Given the training set X, from Theorem 1, there are
C(N , d) HLS dichotomies defined by the set of decision
surfaces fw. If a dichotomy {X−,X+} is separable then the
extended dataset X0 = {X− ∪ {x},X+} or X1 = {X−,X+ ∪
{x}} is separable. Moreover, both are separable (ambiguity)
by some decision surfaces if and only if the orthogonal (d−1)
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FIGURE 12. Asymptotic probability of HLS classes (above) and ambiguous
generalization (bottom).

dimensional subspace to w contains x (small displacements
of these hyperplanes will allow arbitrary classification of the
pattern without affecting the old dichotomies). The projection
of X in that space is also separable and in general position,
therefore, again from theorem 1, the number of dichotomies
in that space is C(N , d − 1). Finally, the probability that x is
ambiguous w.r.t the dichotomy ofX is the ratio between all of
these dichotomies in the (d − 1)-space and the total number
of dichotomies.

This probability, shown in equation 17, tends to one when
the ratio β = N/d is close to 0, then in a high dimen-
sional problem the ambiguity of the pattern is assured under
both class-hypotheses. Under these conditions, a well-trained
linear SVM on the extended feature datasets Xk , generates
a HLS dichotomy {X−k ,X

+

k }, independently of the class-
hypothesis Hk , that arbitrarily places the validation pattern in
both sides of the hyperplane. The consequence is that, with
increasing d , the information extracted from the pattern is
useless for feature extraction or classification. CSL is based
on the fact that some properties on the extended datasets can
reveal a statistical difference on the features extracted under
the class-assumptions. Sure enough, SFE on the extended
datasets provides a set of feature vectors Xk in Rd , where
d is the number of components. In order to select between
both subsets, the non-parametric approach assesses the output
score of a well-trained SVM on them by computing the
conditional-error probabilities, thus we must assure that the
regions Rk are full of samples (non HLS classes) and the
pattern is not ambiguous under class-hypotheses. Fulfilling
these conditions with a low d the performance of the systems
will be satisfactory (see figure 12).
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